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Abstract—This article is concerned with the study of the overall mechanical and electrical properties
of elastic dielectric composites by using the concept of material muitipoles. In particular, by
developing a statistical continuum material multipole theory, the effects of the microstructure of
the inhomogeneities on the overall properties of the composites can be derived. In this theory,
inhomogeneitics are modelled as point material-induced muitipoles. The macroscopic fields obtained
from the ensemble average of the microscopic ficlds in the composite with statistically-distributed
inhomogeneities in a uniform matrix are described by statistical continuum material multipoles in
the matrix. This theory, in comparison with classical effective medium theory, has the possibility of
attacking rather complicated problems such as, for instance. clectromagnetoclastic composites. It
is shown that the statistical anisotropy and shape etfects of microscopic ellipsoidal particles and
their orientations on the overall effective properties of diclectric composites may be obtained in an
explicit form. Also, the macroscopic constitutive relations of elastic dielectric composites and their
mucroscopic material parameters accounting for electroclustic interaction may be derived with the
usc of this statistical continuum multipole theory.

1. INTRODUCTION

The study of composite materials has received constderable attention in recent years, To
provide some theoretically-predictable models for composite materials in various practical
applications, certain assumptions to simplify the problems are usually introduced due to
the complexity of the composite materials. For instance, deformation effects are neglected
in studying overall clectromagnetic propertics of composites, or clectromagnetic effects are
ignored in studying effective mechanical propertices of composites (Kroner, 1959 ; Hashin
and Shtrikman, 1962; Beran, 1968 . Miller, 1969 ; Jeffrey, 1973 ; McCoy and Beran, 1976
Van Beek, 1967 ; Hale, 1976 ; Christensen, 1979 ; Willis, 1983 ; Zhou and Hsich, 1986). The
various approaches and models based on these assumptions may work well for many
applications but they may fail for others in which both electromagnetic and deformation
fields and their coupling effects are important. Such examples, even for homogencous
materials, are numerous, for instance, piczoelectric ceramics and superconducting materials,
ete. (Nelson, 1979 ; Maugin, 1984 ; Moon, 1984 ; Zhou er al., 1986 ; Zhou and Hsich, 1988).
Difliculties are, however, faced in attempts to apply the classical effective medium theory
to study the overall response of electromagnetic deformable composites. For instance, in
the case of using the well-known self-consistent scheme in the classical effective medium
theory, the overall effective constitutive relation for the composite has to be preassumed
as a known form with unknown effective material constants to be determined. Such a
procedure will, however, fail if one does not even know the form of the overall macroscopic
constitutive relation of the composite, which, in general, is the case with clectromagnetic
deformable composites. The overall maucroscopic constitutive relations and overall material
parameters of such composites have to be derived from both the knowledge of specific
material microstructures and the microscopic material properties of the composites.

In this article, the clectroclastic coupling phenomena and their influences on the
overall behaviors of elastic dielectric composites will, therefore, be studicd by introducing a
statistical continuum material multipole theory (Zhou, 1987). In this theory, a composite
is modelled as a medium composed of a large number of inhomogencous particles dis-
tributed in a uniform matrix, and the particles arc assumed to be firmly bonded with the
matrix at their interfaces. The microstructure of the composite is supposed to be of a
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random nature so that a statstical approach is adopted. The inhomogeneous particles
are modelled as point-material-induced multipoles and the macroscopic fields from the
ensemble average of the microscopic fields in the composite are described by statistical con-
tinuum material multipoles in a uniform matrix.

To study quantitatively the overall properties of elastic dielectric composite
materials, a basic solution for an ellipsoidal elastic inhomogeneity with electric polarization
in an infinite elastic dielectric medium is first derived in Section 2. which shows that classical
Eshelby’s elastic solution (Eshelby, 1961) is modified by the presence of electric—lastic
interaction. The overall behaviors of the elastic diclectric composites are then studied by
the statistical continuum material multipole theory. It will be shown that the overall
macroscopic constitutive relations of the elastic dielectric composites as well as their overall
macroscopic material parameters accounting for the electroelastic interaction effect can be
derived. Some quantitative calculations on problems with statistical anisotropy. shape effect
and electric—elastic interaction are given for dilute composites.

2. ANALYSIS OF AN ELLIPSOIDAL INHOMOGENEITY [N ELASTIC DIELECTRICS

It is well known that classical Eshelby’s solutions on elastic inhomogencous inclusions
are of fundamental importance in studying the overall properties of various elastic com-
posite matcrials [see. for instance, Eshelby (1961) and Mura (1982)]. In this section, we
shall deal with the problem of an clectrically-polarized cllipsoidal inhomogencous clastic
particle embedded in an infinite clastic diclectric medium. In the case of mechanical equi-
librium, onc has the following balance cquation

Vet+f=0 H
where t denotes the Cauchy stress tensor and f the body foree,
If the medium is purely clastic and can be characterized by the following lincar Hookce's
law
tu(x) = Cx!kl“k.l(x) (2)
with C,, being the elastic moduli and u the mechanical displucement vector ficld, one may

find with the aid of the method of Green’s function that the mechanical displacement field
u due to the body force [ may be obtained as

= :e,"+j SX)G, (x=x)dx’ 3)
o

where G;; is the elastic Green's function, which, for an isotropic medium, can be written as

! , {(3_4‘.).;” L =D =a]

G = \emali ==K RN @

where i and v are respectively the elastic shear modulus and Poisson’s ratio of the medium,
If the material medium is not elastic and it is characterized by the following relation:

4,(xX) = C.,H“k./(x)‘*‘fir,m(x) (5)

where £° denotes the inclastic part of the stress, we may find formally the displacement
field u which can be expressed with the use of the elastic Green’s function as
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u,=u,"-+—J~ f,(x')G,,(x—x')dx'-#j (X)G s (x—x") dX 6)
Ve be

Using above results, we may now study the problem of elastic deformation at a point x due to
the electric forces acting on an electric dipole centered at X' in an infinite elastic homogeneous
medium under the exertion of an electric field E. By using the method of Green's functions,
the elastic displacement field may be found as

{ / A

in which n’ is a unit vector of the direction of the electric dipole and d is the distance between
two point electric charges which constitute the electric dipole. £~ and f - are the point
electric body forces given by

{ {
f+r= z/E<x'+ ;n) and = —qE<x'— f—,n) (8)

-~

where ¢ denotes the point body charge. For an ideal point electric dipole p, resulting from
the limiting process of letting the distance between the two charge decrcase indcfinitely and
at the same time letting the amount of charge increase in such a way that the product
p = ¢ dn’ remains a constant vector, the displacement, equ (7). becomes

u(x) =G (xN=xX)p,E (X)) =G (x =X )p L, (X) )]
where the electrice tickd has been assumed to be smooth enough such that all the high-order
terms O(d7) vanish during the limiting process.

LEquation (9) shows that the elastic field caused by such an clectric dipole may be
modelled as that generated by an induced point elastic monopole at x” defined by
Py =pL (x) (10)
and an induced point body force at v defined by
Ji = PE (X)) ()
which vanishes for a uniform electric field.
Considering now an inhomogencous particle with a continuum dielectric polarization

P embedded in an elastic diclectric matrix medium, which is subject to certain external
electric and mechanical loads (denoted by E® and u”), one may find that

L = E,”+J Pi(x")G5% (x—x")dx’ (12)
v,
and

u, = 1¢P+J ﬁ(x’)G,,(x—x’)dx’—J Py(xX)G, 4 (x—x")dxX’ (13)
v, :

I3

where 1 is the volume of the particle, and G° and G,, are respectively the electric and elastic
Green’s functions for the infinite matrix medium. The superscript e is used to identify
quantities which are related to electricity.
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Here, one has assumed that the size of the particle is large enough compared with
molecular sizes so that it can be treated as a continuum, and that the dielectric polarization
of the particle is of the form

P =¢yx*E+P’ (14

where P° denotes the spontaneous polarization, and x* the dielectric susceptibility of the
particle. It is also assumed that the dielectric polarization of the matrix material is so small
that the electric body force acting on the matrix may be neglected.

It can be seen from eqns {12) and (13) that the effect of such an inhomogeneous particle
embedded in an elastic dielectric matrix medium may be modelled by a distribution of
continuum electric dipole defined by

§ = P{+As,E (1%
and the body force by
f,=PE; (16)
and the continuum elastic monopole by
Pu=PE ~AC unllnn (17

where Az and AC denote the perturbation values of the material propertics between the
particle and the matrix, which, for the isotropic materials, read

As,, = (&% —£)d, (18)

where e[ =&4(1 +%)] and e*[=g4(1 +3*)] are respectively the permittivity of the matrix and
of the particle, and

AC i = (A* = 2)0,, 00+ (1* — 10940, + 8,0 ,) (19)

where 4, j and A%, p* are respectively Lamé’s elastic constants of the matrix and of the
particle.

In order to determine these induced continuum electric and elastic multipoles, one has
to solve eqns (12) and (13), which arc in general coupled since the elastic deformation
depends on the electric ficld which is dependent of the orientation of the particle which is,
in turn, affected by the elastic deformation. As a first approximation. we may ignore the
influence of the small change of the orientation of the particle, duc to elastic deformation,
on the electric ficld. Thus, for uniform external electric and elastic strain ficlds, we find that
the electrically-induced body force vanishes and that the electric and elastic fields within
the particle are also uniform. and they become respectively

A ! 1
El == (611‘ + ‘;;‘ Lfk) ( : I‘(’ - (' Llim [’I(I)l) (20)
and
("U = (‘slm(s/n + Li/HACI/mm) - (cr(:m + ankl EI p/& ) (Zl )

where ¢;; denotes the infinitesimal elastic strain tensor, and L* and L denote respectively the
electric and elastic depolarization tensors defined by
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T i \"n;
k= )
“ T an s, 1P
and

1
L=~ 3 j' (Gﬂ,r +G,l.r)”;c ds’ (23)

which are constant tensors in the case of the particle being of ellipsoidal shape. Here. S; is
the surface of the particle. and n’ the outer normal vector of the surface S,. For an isotropic
spherical particle. the electric and elastic depolarization tensors may be found explicitly as

Ly = 30« el

and

I {9+ I8u 6h+2u -
Loy= 30,“[ I +4£ (04,04 +0,0,) — In +4 ‘5.101(1 25

and the electric and elastic strain ficlds in the spherical particle may be derived explicitly as

3e LI 4
D L, 26
b= 3o+ e (F 3a P) (26)
and
3'\'+4Il 0 fk Pk

@n

Cip =

. .- 7 + L L WL S P S 5 R
In+4p+3A442Au MR P 4+ 3A) 4240
where sum is mude over the suflix &, and for § # §

Su(3x+4p) o ___Ox+6(E P +EP) (28)

“u = Su3+4u) + Ap(6x + 12p) 7 10uBr +4p) + Ap(12x + 24p)

in which x = 242y 3 is the clastic bulk modulus of the matrix, P the dielectric polarization
in the particle given by eqn (14), and E the electric field in the particle given by eqn (26).
It is shown that for an ellipsoidal elastic inhomogeneous particle with electric polarization
embedded in an infinite elastic diclectric medium, Eshelby's classical solution is modified
by the presence of an additional term on the right-hand side of eqn (21) due to the
clectroelastic interaction.

The stress ficlds within or outside the particle may be found by noting eqns (5), (6)
and (13) as

1,(x) = C i (X)) + (AC gty () ~ P (x)E;(x))y(x) (29)

where the indicative function y(x) is defined by

I, xinV¥,
v(x) = 0. otherwise. (0)

The antisymmetric part of the clastic deformation field in the particle may be studied by
introducing the antisymmetric deformation tensor defined by 2w = Vu—(Vu)”. After some
calculations, one can obtain

SAS I8:4-C
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wl/ = wl] + L:‘;kl(AClkmnemn - PI( El) (3 l )

where the tensor L is defined by

~

1 .
L;';kl = iJS (G‘l-l' _G/l.l’)";( dS (32)
which. in the case of a spherical particle, reads
w l S M
ikl = 6‘#(5,k‘5h‘5,/0k/) in V. (33)
For a spherical particle. one can deduce explicitly from egn (31) that

£
Vxu=Vxu'4+ ———P"xE" 4
u xu +u(3s+A£) X (34)

which gives the proportional relation between the rotation vector and the electric moment
caused by the spontancous polarization of the particle. It is shown that the rotation vector
of the spherical particle is independent of the elastic properties of the particle, and it is also
a constant vector within the particle under uniform external loads. It should be noticed that
formula (34) may only be used to predict small rotations of the particle since the solution
is derived from a small (infinitesimal) deformation theory. For large rotations of the particle,
one needs a finite deformation theory.

It is shown that a basic solution of an cllipsoidal clastic inhomogeneity with electric
polarization embedded in an infinite clastic dielectric medium can be obtained with the use
of the multipole approach. It is found that under the exertion of uniform electric and elastic
loadings, the clastic strain and electric ficld in the ellipsoidal clastic inhomogeneity with
clectric polarization are both uniform and ciun be determined in general by eqns (20) and
(21). The inhomogencous particle can also be rotated uniformly due to the electric moment
acting on the inhomogencity with spontancous polarization, as shown in eqn (34). It is
shown that Eshelby's classical results for an ellipsoidal elastic inhomogeneity embedded in
an infinite elastic medium are modified in the case of elastic dielectrics by the presence of
the electric-elastic interaction.

3. STATISTICAL CONTINUUM MATERIAL MULTIPOLES

It has been shown that an inhomogencity embedded in a matrix medium may be
modelled as continuum material multipoles in a uniform matrix medium. Composite
materials may, however, be composed of many such inhomogeneities. In addition, though
some of the composites may have a regular structure such as laminated media in which the
material properties can be well defined periodically, there is, however, a large class of
composite materials in which the microstructure is so complex that it is hardly feasible to
define its material properties at each point. It is more likely, instead, that only a certain
amount of statistical information on the microstructure of the composites is available. Such
composites are, for instance, dispersion-strengthened, particle-reinforced. and chopped-
fiber-reinforced materials. To study this class of composite materials with large numbers
of randomly-distributed inhomogencous particles, a statistical approach will, therefore, be
adopted and the concepts of statistical continuum material multipoles will be introduced
in this section.

We shall start with the generalization of the concept of statistical continuum efastic
multipoles (Zhou and Hsieh, 1986) to the case where some random parameters accounting
for the microstructure of the body-force array are required. Then. concepts of statistical
continuum electric and magnetic multipoles may be considered similarly.
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In analogy with the Gibbs ensemble used in classical statistical mechanics, we may
imagine a great number of independent samples identical in the sense of having the same
macroscopic elastic property. the same geometric shape and subject to the same number of
point body-force arrays, but varying in an undetermined manner in the distributions and
orientations of these point body-forces from sample to sample (Fig. 1).

The total elastic displacement fields in a given sample due to these M body-force arrays
can be written in general as

M * (—1 k
u(x:x'.... xMo'.. o) = Zl kZ (“/\—"l Pl Gy s (X X7) (35)

where x* is a random variable (varying with different samples) which indicates the center
position of the xth point body-force array, and @ is a random parameter (probably several
parameters) characterizing the microstructure of the body-force array. G;; is the elastic
Green’s function of the sample, which is supposed to be an infinite elastic medium. P},
is the elastic multipole moment of order & for the xth point body-force array. For force
arrays in sclf-equilibrium, we have P} = 0. If the point body forces are pcrmanent in the
sense that they are independent of each other, we may write

Nix}

P =P, (X©)= Z j'ﬁ'(x".(z)’)(l"f‘(x‘.u)’)...(Iii(x’.(!)') (36)
A1

&

where N(2) denotes the number of the point body-forces in the «th point body-foree array
and d"(x) denotes the fith position vector from x* to its corresponding position of the point
body-force £/(x). If the point body-forces arc of the induced type so that they are dependent
on cach other due to interaction among themselves, we shall, in general, have

Nix)

= z ff'(.\" xLoxM et .u)'")(/{" . ..(/’\.“k (37)
)

} 1
l ISy

which means that the clastic multipoles modelling the ath point body-force array are
dependent of other body-foree arrays, their positions and distributions ctc.

With the aid of the joint-probability density function f(Q',.... Q") with Q" = (x*, @),
the ensemble average of clastic ficlds due to the randomly-distributed point body-force
arrays may be expressed as

i —1 k

kv'A J‘l P/.:...,.rk(xl)Gt;.x|..4x,‘(xvx')dx' (38)
k=0 .

where we have introduced the statistical continuum elastic multipole of order &, defined by

Fig. 1. A distribution of point body-force arrays.
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M
P, W xX)=Y | F. ,(Q)dr 39

1=1J0

in which

F’=f fQ..QNpPy L dQ QT dr L daY (40)
8]

where Q is a defined space. Q = V'x I, in which V' is the volume of the material body and
" is a parameter space, w*el,
In the case of permanent point body-force arrays, eqn (39) may be reduced to

P L (x)= J pQIVP,,  (Q)dl @1)
v
where
M
p) = Y W () (42)
=1
with
W, = f . f L, QM dQ . dQ TdQr L QY. (43)
12 Q
\7_.‘....!

The physical meaning of the function [ p(Q') dI™” may be explained as the number of the
clastic multipoles per unit volume since one has

J pQ)dQY = J (j p(Q')dr')dx' = M. (44)
0 v \ Jr

[t is shown that the ensemble-average elastic fields due to a statistically-discrete distribution
of point body-force arrays may be modelled as the elastic fields due to a distribution of
statistical continuum elastic multipoles as defined in eyn (39) or eqn (41).

Similarly, for M randomly-distributed point body-charge arrays in a diclectric body,
we find that the ensemble average of the clectric field duce to the randomly-distributed point
body-charge arrays may be expressed as

I 1kl
CEX(x) = ), = ')”““'f P (X)GE, (X)) dX (43)
s

where we have introduced the statistical continuum electric multipole of order 4, defined
by

M
Pl ()= ) | Fi(Q)dlr (46)

2=t JF

in which
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F o =JJ f(@'.....Q")PT , dQ'.. . dQ "' o dQY (47)
Q Q
M-

with P{? , being the electric multipole moment of order & for the xth point body-charge
array. defined by

Nix)

| S z ¢(x*: GxMel oM L d (48)

If the ath point body-charge array is self-electrically neutral. we have P =0
In particular. if the point body-charge arrays are of permanent type, i.e.

N

Py =P (X0 = Y L) (0 (L 07) 49
B=1

then the statistical continuum electric multipole of order £ may be expressed simply by

P (X)) = J‘ PP, (Q)dl” (50)
r
where p(Q') is given by eqn (42).

4. STATISTICAL CONTINUUM MULTIPOLE MODELLING OF MATERIAL COMPOSITES

To illustrate the use of statistical continuum material multipoles, we shall consider, in
this section, the statistical continuum clectric and clastic multipole modelling of clastic
diclectric composite materials with a large number of M statistically-distributed inhomo-
gencous particles with electrical polarization. Al particles will be assumed to have the same
shape, the same size and the same strength of spontancous clectric polarization but they
can have different orientations. Other types of material composites may be studied similarly.
To formulate the problem mathematically, one has several possibilities with regard to the
composite specimen shape and boundary conditions. To avoid using the concept of an
“infinite” specimen as well as the convergence difficulty (Jeffrey, 1973), we shall consider a
finite spherical specimen, which is assumed to be perfectly embedded in an infinite homo-
geneous elastic dielectric medium with the sume material properties as the matrix of the
composite (see Fig. 2).

The problem of intercest to us is to find the overall properties of such an elastic dielectric
composite. The geometrical arrangement of the inhomogencities in a given sample of the
composite is specified by the indicative functions

Inhomogeneities

%

Overall Propertnes

S ‘\ Z

Matrix Effective Medium

H
§
oo
@
l

Fig. 2. A material composite of spherical shape.
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. I, xmm¥,
7(x) = 0, otherwise (51

where 1, is the volume of the xth inhomogeneity (x = 1.2.... .. M. The dimension of the
inhomogeneities will be always assumed to be much smaller than the dimension of the
composite specimen, but much larger than the size of the molecule (or atom) such that the
inhomogeneous particle may be treated as a continuum with permittivity ¢* and elastic
moduli C*. With the aid of results given in Section 2, the microscopic electric and elastic
fields in the composite under the action of external fields (E" and u") may be written as

M
E=E+Y¥ f (P + A6, NG, (x =X ) dx (52)
x=1 l‘,
and
M
o=+ Y [J‘ f‘j”G,,(x—x')dx'—j P‘,:*G,M(x—x’)dx’]. (53)
x =1 "', v,

By noting the geometrical arrangements and the orientations of the inhomogeneitics, egns
(52) and (33) can be further expressed as

")
Eqx: Q' ..., QY =L+ Z (P + A EPYG S (x =X~y dE {(54)
-1 4V
and
M M
QL QY = w e Y | G, (=X =y ) dE= Y | PG, (x =X —y) dE
PR L x=1 JF;
(55)

in which PP E™ £ and P'™ are respectively the permancent electric polarization, the
clectric ticld, the induced cleetric body force and the induced clustic dipole density defined
in the xth inhomogeneity, which are, in general, dependent on the geometrical arrangements
of ull other inhomogeneitics due to interaction among themselves.

Here, we introduce the notation Q* = (x*, 0%y, w*) and

y.! o Q'((}'l‘ !i"l‘ w:) .c {56)

where x* is the position vector of the gravitational center and QF the orientation tensor of
the ath inhomogencous ellipsoid, which is an orthogonal tensor, detined by

Q%) =
cos ¥ cos ) —cos 7 sinY* sin w®  —cos ¥* sin w' —cos 67 sin ' cos sin ¥* sin OF
Cos 3" sin P +cos 0" cos 7 sin @  —sin ¥ sin w* +cos 07 cos ¢ cos w*  —cos f* sin O

sin i sin ' cos @ sin cos i
(57)
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) X
X3 3

Fig. 3. Phase geometry of the composite.

where 0%, ¥* and w” are the Euler angles of the xth inhomogeneity (see Fig. 3).
In particular, for inhomogeneities with an ellipsoidal shape of revolution. we may let
w' = 0 and the orientation tensor is reduced to

cos ' —cos 0 siny? sin ( sin *
(@5) ={sinyg™  cosO cosy* —sin(cosy’| (58)
0 sin O cos 0°

For spherical inhomogencous particles, we have simply Q7 = 8,,, which is the Kronecker
delta, By a Taylor expansion of the Grreen's function, eqns (54) and (55) may be writien as

E(x:Q',... Q% = E'~ 2 Z~ 1""’ QL QNG (x=XT) (59)

2=l k=l

M
wix; Q... Q" =u'+ Z SMQ, QNG (x—xT)

x= )
- l)k ] M
+ Z Z P2 Q.. QG L (x=X") (60)
2=y k=1

which shows that given discretely-distributed inhomogencitics may be modelled by a discrete
distribution of the induced electric and elastic multipoles, defined respectively by

P = J. (P""‘+As/,IE‘,")y§_,...y; dé (k=1,2,..) 61)
and
f = j‘ PYER ¢ (62)
l
PR = —kf” [ACM,. uii = PYE — L PYED): ] 2o d (63)

fork=1.2,..., where y7 ... 5 = | when k = 1. It is also shown that the total resultant
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charge (the zeroth order of the electric multipole) of the point-charge arrays modelling the
inhomogeneities vanishes, since these inhomogeneities are self-electrically neutral. The
induced body-force term due to the electric and elastic interaction given by eqn (62). in
general, does not vanish. If. however, the microscopic electric field inside the particles is
uniform, this term will be zero.

Considering now an ensemble of large numbers of such samples, the ensemble average
of the electric field and the elastic displacement field in the composite may be expressed by

x — &
=E'- Y =D j s (XG5 x) Ay (64)
1

o K W

{u Y(X) =jJ. Q... Q" (x:Q,....QY)dQ' ... dQY
n  Ja

k=1

R
= ;;:’-;-J' Fi(x )G, (x. x"ydx" + z (- ” j P (X)G, o (x.X)dx  (65)
l",‘ . ;'"

where £(Q'...., Q) is the M-point joint probability density function, and Q'€ Q which is
adefined space, Q = Ve x I, in which [ = (0.5) x (0. 27) x (0. 27) 1s a parameter space and
Vg the volume of the composite specimen.

Equations (64) and (65) show that the macroscopic ensemble average behavior of such
M statistically-distributed inhomogencous particies may be modelied overall by a dis-
tribution of induced statistical continuum clectric and clastic multipoles defined respectively
by

I’f‘ GX) = Z zf‘x"\‘(ﬂ’)dr’ (66)
x -1
and
M
Sixy=Y JZY’(Q’)«!F’ (67)
awl JU
M
P WXy =3 L (68)
4=
where
zZem, = J‘ J‘ FA( 1 ,Q"‘){’_‘,’ff{,‘ dQ' .. dor taqrrt, L doM 6%
(4] 83
A~ 1
and
zZ0 = J Jf(ﬂ' "’)fj”(Q‘,....Q")dQ’...dQ‘ Tdrtt LAY (T
Zj,':_“,k = J- j @Y I’j?:_,ﬂ dQ'...dor tdartt L dQY (71

in whichdQ*~' = | whena = | and dQ**' = | when x = M.
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Some special cases may be of interest. If the electric and elastic multipoles modelling
the xth inhomogeneity do not explicitly depend on the geometrical positions and orientations
of its surrounding inhomogenetties, i.e.

P, =P L () (72)

and
=10 (73
Pl =Py, () (74)

eqns (66). (67) and (68) may be reduced to

P L (x) = J p(Q) PS5, , (Q)dl” (75)
r
and
Ji(x) = J;p(Q')f,(Q')dr' (76)
P, (xX)= J PP, () dIT an
r

where the function p(£27) is defined in eqn (42). Examples of such cascs may be dilute
suspensions or systems in which the microscope electric and elastic ficlds in the particles
may be solved by using the sclf-consistent scheme approximation, Other cases, such as
systems suitable for the pair interaction approximation or the nearest interiaction approxi-
mation, may also exist and eqns (66)-(68) can also be simplificd. It is scen that reasonable
approximations may not only simplify the many-body interaction problem, but may also
make it possible to obtain the necessary statistical information in many cases.

5. EFFECTIVE PROPERTIES OF COMPOSITES WITH RANDOM MICROSTRUCTURES

The problem of interest in this section is to sec how the proposed statistical continuum
multipole approach can be used to find explicitly the effective properties of the composite
and the statistical anisotropy and shape effects of the microstructures on the overall prop-
ertics of composites with randomly-distributed inhomogeneities. For simplicity, we shall
study clastic diclectric composites in which the electroelastic interaction effect is ignored.
The problem of finding the effective permittivity and the effective elastic properties of
the composite is thus fully separated. We may now consider the following microscopic
constitutive relations

M
D= (x+ Y Am/’)'E (78a)
zw |
and
M
t= (C+ Y ACy’): e (78b)
x= 1

where 77 is the indicative function of the ath inhomogeneous particle. The ensemble average
of relations (78a) and (78b) then gives
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o
(D> = e'(E>+A£'< Z }"E> {79a)
Ay=1}
and
M k
() =C:{ed+AC: < Y ;"e>. {79b)
=1
Due to the linearity of the problems, the microscopic electric and elastic fields in the xth
inclusion (x = 1,2,.... M) may be expressed by
EXE:Q.....QY) =TEQ,....Q9YE, EeV, (80a)
and
e QYY) = AL (B Q. QNel. Ee b (80b)

where tensors T and A*, in general, are unknown beforehand and have to be determined
by solving the equations of microscopic etectric and clastic fields.

With the use of clectric and elastic multipole modelling, the microscopic electric and
elastic ficlds in the composite may be written respectively as

f,{K:Q{.....Q“)=F,,(&:QI ..... {21,)5? (xkl)
and
xR QYY =800 Qe (81b)
in which
Y,
,'-l/ = ‘\iu+ Z R{‘; (8?_1!)
=1
and
M
B =d,0,+ Z Yhy {82b}
R
where
s (_I}k—l , . .
R =% " oGS, L (x—x") | A, TH 50 0 dE {83a)
ial{k_i}§ T £, ' ° ‘
and
4 4 ("”k-l } P p p ]Id
YI'IW = Z, (;;_'_'_'"l'}r"l[”,"!___,‘(ﬁ—-\ ) ) AC,u,,m,A,..;u_h_.u-)“.} 5 (83b)
k-l ' Hy
with

5'.,-.", 1.(‘ h .\Z") = %{Gm.p‘.v,.,‘.rk(x - K") + c"‘/n.u,.ws‘(x - x”)l- (84)
The effective properties of the composite can thus be determined by compating its definition

(D) =& (E) (85a)

and
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() =C": (e (85b)

with eqns (79a.b). which leads to the result

M
ele/ﬂ- =& +A8!p< Zl A T;ak><Fk/>—l (86a)
and
M
'c;LI = Cilk1+Aer;vq< Z .I‘,A;qmn><ankl>v ‘- (86b)
x=1

Obviously to perform the ensemble average. the details of the statistical information on the
microstructure of the composite have to be given. In addition, to complete the calculation,
one has to find the microscopic electric and elastic fields in the particles, which seems to be
impossible in practice because of the complicated many-body interaction problems as well
as their statistical character. Some physically reasonable assumptions are, therefore, needed
to simplify the problem and make it solvable. For instance, for small-concentration sus-
pensions, a first-order approximation can be made by neglecting interaction between
particles. where classical solutions of a single inhomogencous particle embedded in an
infinitc medium may be used [see Eshelby (1961), Mura (1982) and Bdéttcher (1973)].
Highcr-order approximations accounting for some interaction effects have also been pro-
posed as, for instance, the nearest interaction model of using a solution of a pair of
interactive particles [sec JefTrey (1973, 1974) and McCoy and Beran (1976)] and the classical
sell-consistent scheme [see Hershey (1954) and Hashin (1968)]. For weakly-inhomogencous
composites, theories of bounds and classical perturbution methods have been used quite
successlully [see Hashin and Shtrikman (1962), Beran (1968), Hori (1973) and Willis
(197D).

In this section, we shall use the statistical continuum multipole approach to study the
effective properties of an elastic and diclectric composite with M statistically-distributed
identical inhomogencous elastic and diclectric ellipsoidal particles with elastic moduli C*
and permittivity £* embedded in a homogencous matrix with elastic moduli C and per-
mittivity £ To see how the statistical continuum multipole approach works, we consider a
dilute suspension system, i.e. the effect of interaction between particles may be neglected.
Undcr the assumption of the statistical homogeneity but not necessarily statistical isotropic
on the geometric arrangement of the inhomogencous particles, the probability density
function (see Section 3) can be introduced as

p) = Mp*([")/Vy (87)
in which
M
p* () = Z Wwxrym (88)
2 -]
where
W) = ff w(',...,.0¥)dr'...dr*-tdr*+"'...drv~ (89)
I r
H_J

M-

with the normalization condition
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‘[J‘ w(l',....[™ydr'...dr* = 1. (90)
r r

In the dilute approximation, the microscopic electric and elastic strain fields in the xth
ellipsoidal inclusion (particle) may be found, as a single inhomogeneous ellipsoid with a
certain orientation in an infinite matrix subjected to the external electric field E° and the
external strain field e°, to be

ER = Q0m([™Q,(I*)T,E) (91a)
and
e = Qi ([0, (T) QT Qu(T*) A, rep, (91b)

where T,, and 4, ,, are the transformation tensors that characterize respectively the electric
and elastic field in an ellipsoidal particle with its axes coincide with a chosen coordinate
system (see Fig. 3) in which 8 = 0, ¢ = 0 and w = 0. They are both known constant tensors
[see Stratton (1941) and Mura (1982)].

The electric and elastic multipoles defined by eqns (61)-(63) can thus be found by
inserting eqn (91). For instance, the electric dipole is found as

P = V8 Qi (M) Q. (T T, E (92)

where one has set P = 0 for inhomogeneous particles without spontancous polarization,
and the elastic monopole is found as

PP = = ViAC Qi (T) Q) (M) Qe (M) Quu (T s, (93)
where only the clastic contribution is considered.
An interesting result in the case of statistical homogeneity is found ; since the statistical

continuum clectric and clastic multipoles defined in eqns (75)-(77) are independent of x’
in the dilute approximation, eqn (64) can be reduced to

.
(Eny = En— - FiL, 94
where P< is the statistical continuum electric dipole moment given by
P; =fAb‘[ﬁP‘(r')Qk.(r')Qn,(r’)dr']T,-, E; (95)

with /= MV,/V, being the volume fraction of inhomogencous particles in the composite
and L the electric depolarizing tensor given by

L, = —sf G(x—x')dx’ = 6., (96)
Vll

for x inside the spherical volume V. Here, the matrix and the particle are both assumed
to be isotropic for simplicity.

Also, from eqn (65), one can find the ensemble average of the elastic strain ficlds in
the composite by

ey = C'.o,'+ Lijklplk (97)

where P, is the statistical continuum elastic monopole moment given by
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Py = —fAC zkmn[J p‘(l")Q,.,(T')Q,,,(I")Q,,(I")Qq,(r’)dr']A,,,,e,‘,’., %8)
r
and L, is the elastic depolarization tensor defined by
I ’ ,*
L=~ “Z'L (Gaj +GiIne dS 99)

which can be given explicitly from eqn (25) for isotropic elastic matrix media.
Now, comparing eqn (94) with eqn (81a), we find

Aef

CFoi) = Ome— 3= Ty rx)"(r")Q,..,»(I"')Q::,.-(r')dr': (100)

and. comparing egn (97) with eqn (81b), we get
<Bum/> = 6,,,6” —fL:,kIACklmn[J; p*(r,)Qrm‘(r’)Qni(r‘ )Q,,,(F')Q,,,(r') dr']Aiixl' (IOI)

Furthermore, by noting eqns (80a) and (91a), we find

M
< ) }"Ti:> =f£ ()T, Q0u (IO (T dI (102)
2=l

and, by noting cqns (80b) and (91b), we get

< Z 7’/’7..W> =fj; PP At Qi () 0y (M) Qe (T7) Qo (1) AT (103)
2= |

Thus, we have obtained, in general, analytical expressions, eqn (86) and eqns (100)-(103),
for the determination of the effective permittivity and of the effective elastic moduli of a
statistically-anisotropic diclectric and elastic composite in the dilute suspension approxi-
mation, provided that the probability density function p*(I"") of the statistical distribution
of orientations of the particles is given.

For simplicity as well as for the similarity of the dielectric and elastic problems, we shall
now consider a concrete example in which we would like to find the effective permittivity of
a (rigid) dielectric composite with M statistically-distributed identical inhomogeneous rigid
eltipsoidal particles. We assume that the dielectric composite contains M ellipsoidal inhomo-
gencous particles which are statistically distributed in a uniform matrix. The orientations
of the particles are assumed to be characterized by the Guassian distribution

p*(’) = Cexp(—a|l"=T°3) (104)

where o is a statistical parameter determined and controllable by the method of manufacture
of the composite, and C is the constant determined by the following normalization
condition

J' p(r)dr’ = 1. (105)
r

According to Stratton (1941), we may write explicitly
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3

Qk:(r’)QU(rl)]’-{j = Z ;'ler(r’)Qli(r') (106)
=1
where
-1
A= (l+abcé§ B,) (107)
2e
in which
* d
B, =j = (108)
O (s+a’) S (s+b Y5+t
and
£ x
B, = — & - == (109)
IO (s+b7) S s+a s+ )
and

o~

: ds
v (s+e) N/ a)s+bY)

B}= fHO)

L&

where a, b and ¢ are the axes of the ellipsoid.

It can then be seen from egns (86a). {100) and (102) that the shape effect of the
inhomogencous particles on the overall electric permittivity of the composite is taken into
account in the parameters 4, (£ = 1,2, 3), while the effect of the statistical orientations of
the particles is taken into account by the orientation tensor Q(I7) as well as the probability
density function p*(I"°). In the case of sphericul inhomogencous particles, the problem is
much simplificd and we have

. ) 3
II=A:=/‘=3‘-+A1" (II])
and
Je+ (1 =/)Ae
CFy =" “"55-‘42‘5!3”” 5, (112)
and
Y f
(E7m) =3l ()

The effective permittivity of a composite with dilute spherical inhomogeneous particles can
thus be obtained as

M =g 2 +I*+ .'ZfA:‘ (114)
et u*—fA
which is in accordance with the Rayleigh mixture formula (Rayleigh, 1892) obtainable by
using a volume-average method. The equivalence of the ensemble average and the volume
average is then proved in this case. [t should be noticed, however, that real physical systems
very rarely satisfy the ergodic hypothesis (Krdner, 1986). The result also shows that the
derivation of the Rayleigh mixture formula for a composite with statistically-homogencous
distributed dilute spherical particles is independent of the assumption of statistical isotropy
for the composite provided that one ignores the interaction among particles.
To see explicitly the shape effect of inhomogenecous particles on the overail effective
propertics of a dielectric composite. let us consider ellipsoidal particles (with a = b). If one
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assumes that all directions of the orientations of the particles are equally probable, the
probability of the particle orientation being within the range (6. 0" +d0’) and (¥, ¥ +dy’)
then reads

1
p*(I)dl = 2—sin 0" o dy". (115)

Using eqns (58). (86a). (100) and (102), the effective permittivity of the dielectric composite
can thus be derived as

ot F9t:+2fA£(2}., +43)
o 98—fAE(2;.|+/..3)

(116)

in which the shape effect parameters A, and 4; are given by eqns (107)-(110) with g = 5.
For ¢ » a, one has the rod or needle type of particle. For ¢ « a and close to zero, one has
the disc type of particles. For ¢ = a, one gets the spherical particles. The numerical results
of the effective permittivity for different types of particle shapes are shown in Fig. 4.

It is shown that for fully-random orientations of cllipsoidal particles. the ensemble-
average behavior of a diclectric composite displays an isotropic property. If now the
oricntations of the particles (¢ = b) have a preferred direction. say in the direction of the
xy-axis (0" = 0). and if their statistical distribution is represented by a Guassian distribution
(104), one can then write

P () Al = Cexp (—a 0" ) sin O A0 dy’ (117

where o is a statistical parameter characterizing the standard deviation of ¢ and Cis a
constant determined by egqn (105), which can be written as

r -1
C= [Zn‘[ exp(=a*l ) sin(r d()'] . (118)
(

After some calculations, we can obtain

w 4.0 4 (1) cra =20
o (2) c/a = 0.4
- (3) csa = 1.0

® {4) c/a = 4.0 (1

(5) c¢/a = =
E (s
i 4

> 3.0 pe/e= 2.0 (4)

el

b

(2)

E 1

-9

g J

> 2.0

o

18]

Q

W

oY

w

1.0 T T T
0 0.2 0.4 0.6 0.8 1.0

Volume Fraction £

Fig. 4. Shape effect of ellipsoidal inhomogencous particles on the effective permittivity of the
dielectric composite.
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") = Je+2Aef4, oo ("o
i Py vy N R (119)
0 0 g
where the dimensionless parameter n is defined by
_ (3e+2A¢efA4,)(3e—2AefA ) (120)
= (Be+2Aef4)(3e—2AefA4,) -
with the constants 4, and A4, being given respectively by
A = nj Cexp(—o0*)(L, (1 +cos’ 0) + 4, sin” ) sin 0 df (120
0
and
Ay = 2nj' Cexp(—00?)(4, sin® 0+ 4, cos® () sin 6 d0. (122)
0

It is shown that the overall effcctive permittivity of the composite can be anisotropic,
provided that the orientations of the microcllipsoidal particles statistically have a preferred
dircction. In the considered (transversely isotropic) case, the macroscopic effective per-
mittivitics arc found to have two independent constants and they are given in eqn (119).
The dependence of some numerical values of the macroscopic anisotropic parameter y on
the statistical paramcter o and the shape of the microparticles is shown in Fig. 5.

6. OVERALL BEHAVIOR OF ELASTIC DIELECTRIC COMPOSITES

This scction is concerned with the study of the overall behavior of an elastic diclectric
composite, in which some effects of the interaction between the electrice fickd and clastic ficld
are taken into account. The constitutive relations characterizing the overall behavior of the
elastic dielectric composite will be derived with the use of the statistical continuum multipole

1.4
(1) c/a = 0 (5)
(2) c¢/a = 0.4
(3) c¢/a = 1.0
(4) c/a = 4.0

1.2 1 (5) c/a

Anisotropic Parameter n

Statistical Parameter ¢

Fig. 5. Statistical anisotropy and shape effects of inhomegencous particles on the cffective
permittivitics of the composite.
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approach. in which no pre-assumptions on the macroscopic constitutive relations of the
composite are needed. This result thus makes the statistical continuum multipole approach
superior to the classical effective medium theory where the effective constitutive relations
of composites have to be pre-assumed. To make a distinction, we shall call the derived
governing equations for the overall behavior of the elastic diclectric composites the overall
macroscopic constitutive relations and call their coctlicients the overall macroscopic
material coefficients rather than the effective constitutive relations and the effective material
coefficients defined in effective medium theory.

Consider an elastic dielectric composite with M randomly-distributed elastic dielectric
inhomogeneous particles. The material properties of the matrix and the particles are sup-
posed to be the same as those described in Section 2. With the use of the result given in
Section 2. we may find that the ensemble-average electric polarization and elastic stress
fields can be expressed in the following form

M
(P> = ::(,;(<E,>+::1,Ax< Z ',"E,> (123)
r=1
and
v
Y = iewdd, + e, +< Y 7'(Adcid, +28pe, — P, E.)>. (124)
-~

To perform the ensembie average, the detailed solution of the microscopic ficlds has to be
obtained. For simplicity, we consider an clastic diclectric composite with ditute suspension
of spherical inhomogencous particles and make the assumptions of statistical homogencity
and statistical isotropy for the composite. To first order, the interaction between particles
ts ignored for the ditute system, and the influence of the small change of particle orientations
caused by small elastic deformation on the overall clectric ficld is neglected. In such a case,
after some caleulations, we can obtain

(P> = g™ (K> (125)
where the overall macroscopic diclectric susceptibility can be written as

mac 3ufAy

x Lt e+ (1 —f)Ae (126)

which is in accordunce with the classical Rayleigh mixture formula for the effective diclectric
susceptibility of composites with dilute spherical particles in the rigid-body approximation.
The ensemble-average strain ficld may be written as

<":/> = ('101+ Ll//(l I-)kl (|27)

where the statistical continuum clastic monopole moment P may be found from eqns (63),
(74) and (77) as

_ Gr+du) f { (36) ey JeAe—gax* .
p o= oo 0 Ll CE o) ST LIS )
v+ +3Ax 3Awe, [3a(1 = A« 2 CEOCED+ (3e+Ae)" ") (128)

where the sum is over the suffix i, and for i # §

SAS 28:4-D
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_ Su3k+4u) f {’ . Ge)leox*

P S 0
CT T SuOk+ 4+ 65+ 2ap U HY T Ber (1) Ae)

T CEXKE, >} (129)

By noting eqns (25) and (94). we finally arrive at the result that the overall macroscopic
stress in an elastic dielectric composite with dilute spherical particles in the absence of
permanent electric polarizations may be written as

<lu’> = (Kmdc“ %“muu)<erm>6u+Zumac<e:i>—'[%‘(‘:—r)<Pn><En>5l[+t<Pj><El>]

(130
where the overall macroscopic elastic moduli read
. (3r+41) fAx
e e MR 3
K +1;\+4;L+?(l—j Ax (13
and
Su(In+4
=t w3+ /t)/A,u (137)

5;:('4:\ +4;:) +()Au {1 ~] M w + ";:)

which are in accordance with classical results for the effective clastic moduli of an clastic
composite with dilute spherical particles in the case of no electric forees [sce, for instance,
Christensen (1979)].

By taking into account the clectroclastic interaction, it is found from eqn (130) that
there are two new dimensionless macroscopic clectrocelastic parameters responsible (or the
overall behavior of an elustic diclectric composite nuterial, defined by

. T A R (133)
[Hmu /)][ L (=) ]
3n+4
and
T eA =)+ u) N (139
w(l =/ )k I ITATS
[‘*“"s;i§;+4m ][ i ’31?} *

where f denotes the volume fraction of the particles. The numerical results of the two
paramcters are shown respectively in Figs 6a and 6b for some combinations of different
two phase materials.

The equations obtained. (125) and (130). may be used approximately as the overall
macroscopic constitutive relations of the composite, provided that applied clectric and
mechanical loads do not have significant variations within any representative volume
which is macroscopically small compared with the total volume of the composite, but is
microscopically large enough to contain many particies. However, when treating composites
with loads having significant vanations within the scale length of scveral particles, such as
cracked composites, the effect of high-order multipoles has to be, in general, taken into
account. In addition, if the particles in the composites have spontaneous electrical polar-
izations p"n” (x = 1,2,.... M). a stress term fo(p°)°d,; with
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(1) &x/x=2, Ax/x=2
(2) Ax/x=2, Ax/x=10
(3) Ax/x=10, Ax/x=2

(4) 8x/x=10, Ax/x=10 )

€/ey=4, v = 0.25

Electroelastic Parameter ¢

Volume Fraction f

Fig. 6a. Mucroscopic electroelastic parameter ¢ and its dependence on the volume fraction of the
b p . p . . p. .
particles and the microscopic material properties.

(1) duw/u=2, Ax/x=2
(2) Au/u=2, A4x/x=10
0.8 ] (3) Bdu/u=10, A&x/x=2
(4) Au/u=10, b&x/x=10
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Electroelastic Parameter t

Volume Fraction f

Fig. 6b. Mucroscopic electroclustic parameter t and its dependence on the volume fruction of the
particles and the microscopic material propertics.

‘(3 L= Lo ¥
By = = __j.(__s_té'._f }_)_-__,-__ (135)

is found to be present in eqn (130). This stress term exists cven in the absence of external
clectric and mechanical loads. and. therefore, may be considered as the internal stress in
the composite. The presence of the internal stress is physically understandable since the
internal electric ficld caused by all permanent electric dipole moments of the particles will
generate electric forces and torques on the particles, which must be balanced by mechanical
forces in equilibrium state. The presented example shows the advantage of the statistical
continuum multipole model in comparison with the classical effective medium theory where
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the formal effective mucroscopic constitutive relations for the composite have to be assumed
beforehund. which. however, as shown, may be unknown for complex electromagnetic
deformable composite materials. Similar results may also be obtained for certain elastic
magnetic composite materials due to the analogy between electric polarization and
magnetization.

7. CONCLUSIONS

A statistical continuum material multipole theory has been developed in this article to
treat problems of elastic diclectric composites with large numbers of statistically-distributed
inhomogeneous clastic dielectric particles. A basic solution accounting for the electroelastic
interaction of an cllipsoidal inhomogencous particle with electric polarization in an infinite
clastic diclectric medium is first derived. which modifics the classical Eshelby's elastic
solution for an ellipsoidal elastic inhomogeneity in an clastic medium by the presence of the
electroclustic interaction. With the use of the solution, the overall macroscopic constitutive
relations for elastic diclectric composites as well as their overall macroscopic material
parameters accounting for the clectroelastic interaction are then obtained. It is found that
if the mechanical behaviors of the matrix and the inhomogencous particles are both assumed
to be deseribed microscopically by Hooke's laws, the overall macroscopic mechanical
constitutive relation of the elastic dielectric composite can, however, be of non-Hookean
form. Furthermore, overall internal stresses may exist in an clastic dielectric composite with
inhomogencous particles having permanent clectric dipole moments due to the cflects of
clectriv forees and torques acting on the microscopic particles. Hlustratively, the statistical
anisotropy and shape effects of ellipsoidal inhomogencous particles and the cffect of their
oricntiations on the overall effective properties of the clastic and diclectric composiles
have also been studied und formulated explicitly with the use of the statistical continuum
multipole approach. This theory thus presents its advantages of uniformity, generality and
possibility of treating more complicated interaction and electromagnetoctastic coupling
phenomena in compaosite materials.
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